
International Journal of Scientific & Engineering Research, Volume 4, Issue ƛ,ɯ)ÜÓà 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Transformation of Business Processes into UML
Models: An SBVR Approach

Amit Raj, Ashish Agrawal, T. V. Prabhakar

Abstract— A business process is a set of activities that collectively perform and deliver a complex functionality. At a very early stage of

software development, business semantics are discussed with stakeholders. A business analyst writes these semantics in his preferred

language such as English. A software architect/manager understands them and creates business process. An IT team converts these

business processes into platform-specific models such as UML, which are ultimately converted into the application code. During this life

cycle, business semantics are passed through several stages that dilute the semantics. This paper presents a SBVR approach to design

business process in structured English and illustrates a mechanism to automatically convert those business processes into UML models

that can be further used for application-specific code generation.

Index Terms— Business rules and modeling, MDA, Model Transformation, Metamodeling, SBVR, UML.

—————————— � ——————————

1 INTRODUCTION

HE Business Process Modeling and Business Rule Model-
ing are the most prevalent approaches for modeling beha-
vior of business. In process modeling, operational beha-

vior of an enterprise is represented through process models.
Rule modeling approach follows the methodology of separat-
ing business rules from process models and defining rule
models as static nature of business. Following business rules
approach [1], Object Management Group (OMG) has given
Semantics of Business Vocabulary and Business Rules (SBVR)
[2], a declarative meta-model for describing business vocabu-
lary and business rules. Benefits of SBVR are its declarative
nature, rule modeling approach, natural language representa-
tion and formal logical backbone. However, process related
concepts are outside the scope of SBVR.

Both the process modeling and rule modeling approaches

have different benefits in terms of semantic representation.
Representational analysis done by Michel et al. [3], show that
any single approach is not capable of representing all business
constructs. Rule modeling approach focuses on decision points
which regulate the business. On the other hand, process mod-
eling approach tries to minimize the amount of work required
in processing, but ignores decision points. Michel et al.
showed that combination of a rule modeling language and a
process modeling language covers maximum representational
constructs.
From control flow perspective, process modeling can be cate-
gorized into two types:

1. Process Modeling defines a process as an exact se-
quence of process elements (tasks, events, etc.) and
routing elements (gateways). Examples of procedural
process modeling languages are; BPMN [4], BPEL [5],
EPC [6], WorkFlowNets [7], UML Activity Diagram
[8], etc.

2. Declarative Modeling defines a process as a set of
process elements and declarative statements
representing constraints over them. Examples of dec-
larative process modeling languages are; Case Han-
dling [9], Penelope [10], ConDec [11], DecSerFlow
[12], Constraint Specification Framework [13], etc.

In procedural modeling, structure and execution path of a

process is fixed at design time. Compared to this, a declarative
process model only defines “what” this process offers to the
business, leaving out the information of “how” to achieve it. In
practice, a designed process model might be executed in dif-
ferent operating conditions of business. In knowledge inten-
sive business processes, sometimes it is not feasible to specify
exact execution path of a process at design time. Process mod-
els also evolve as a result of process analysis and process im-
provement. Thus, for knowledge intensive and dynamic
processes, flexibility and adaptability are essential require-
ments of process models.

The most popular and widely used notation for process mod-
eling is BPMN due to its simple graphical notation, which is
closer to business people. However, process models prepared
using BPMN are procedural in nature and contain the same
problems mentioned above. There also exist several declara-
tive languages in literature but most of them cover only a spe-
cific part of the process model. For example, Penelope only
describes sequence and timing constraints of a process model.
ConDec mainly focuses on control flow constraints. Case-
Handling mainly targets data-constraints and authorization.
To overcome these problems, there is a need for a generic dec-
larative process meta-model which can be integrated with rule
meta-model (SBVR) and its transformation into platform spe-
cific models such as UML models. This work is an extension of

T

————————————————

• Amit Raj is currently pursuing PhD degree program in School of Comput-
er Science and Statistics at Trinity College of Dublin, Ireland
E-mail: araj@scss.tcd.ie

• Ashish Agrawal is currently pursuingPhD degree program in Department
of Computer Science and Engineering at Indian Institute of Technology,
Kanpur, India, E-mail: agrawala@cse.iitk.ac.in

• T.V. Prabhakar is a professor in the department of Computer Science and
Engineering at Indian Institute of Technology, Kanpur, India
Email: tvp@cse.iitk.ac.in

647

IJSER

International Journal of Scientific & Engineering Research Volume 4, (ÚÚÜÌɯƛȮɯ)ÜÓàɯƖƔƕƗɯɯ
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

our previous works [14] [15], where we provide a mechanism
to define the business processes in SBVR and their transforma-
tion into UML models. We have applied the SBVR approach to
model business processes. A generic meta-model for declara-
tive business process modeling, Semantics of Business Process
Vocabulary and Process Rules (SBPVR) is proposed. SBPVR
provides conceptual vocabularies to define process elements,
their semantics and process rules. SBPVR also supports natu-
ral language representation (Structured English) for the
process models.

On the other hand, there is a need to automatically convert
such business semantics into the UML models as SBPVR mod-
els will be required to generate an application code. Another
contribution of this paper is to bridge the gap between busi-
ness people and IT people in order to minimize the loss of se-
mantics. The paper shows how to create the business
processes in SBPVR and also shows how to transform them to
PIMs. Mark H. Linehan [16] had tried to develop PIMs from
SBVR models. Markus Schacher [17] shows the transformation
of business rules to executable UML Models (also called
xUML Models) based on their CASSANDRA Platform [18]
and also shows how BPMN models can be mapped to xUML
Models. Eriksson et. al., in his book [19] has shown the busi-
ness modeling with UML.

Main challenge in transforming the Business processes
rules to PIM is the detection of automatable business rules and
their automation. “Automating” a rule means to enforce the
rule through automation. In general, an enforcement policy
needs to be specified for each rule and putting an obligation
on the system or process as to exactly how, when, and where
the system or process will enforce the rule. That is, there
should be a rule or a set of rules for each automatable rule
about how each automatable rule will be enforced by the sys-
tem and in this paper we are trying to describe that set of
rules. This is often non-trivial, as there are often several op-
tions available, and it is a system design choice which one to
use. Additionally, the enforcement may be complex, involving
many steps and coordinated activity to enforce the rule. This
information is generally not in the automatable rule itself, but
involves other considerations too. The contribution of this pa-
per is to analyze all those requirements and presenting a me-
thodology which allows business people to convert their busi-
ness processes into UML Activity Diagram (AD), Sequence
Diagram (SD) and Class Diagram (CD).

2 RELATED WORK

2.1 SBVR

 SBVR categorizes business knowledge into three parts; Con-
cept types, Fact types and Business rules. Methodology to
create SBVR models follows Business Rules Mantra, “Rules are
built over fact types and fact types are based on concepts” [2]
[1]. Figure 1 depicts the methodology of SBVR. It also supports
natural language representation Structured English which
enhances its usability for business people. A graphical repre-
sentation has also been developed by Musham et al. [20].

Figure 1. SBVR Methodology

2.2 Existing BP Modeling Languages

 There exists several process modeling languages in the lite-
rature. These languages differ in the terms of procedural or
declarative nature, target area, audience, representation, for-
malization etc.

BPMN has become de-facto standard for most of the BPM
suites due to its simple graphical notation. Languages like
BPEL and UML Activity Diagram, which target system model,
are too complex to be used by business people. Models de-
fined using BPMN are procedural in nature but lack in seman-
tics. Languages like WorkFlowNets [7] and EPC [6] are sup-
ported by mathematical formalization (petri-nets, pi-calculus
etc.). The downsides are their procedural nature and limited
coverage of various aspects of process modeling.

 Compared to procedural languages, most of the declarative
languages cover only a specific part of a process model. Sadiq
et al. [13] proposed a constraint specification framework for
flexible business processes. This approach can be viewed as a
starting point for declarative modeling as only a part of the
process model is described declaratively. Van der Aalst et al.
[9] have given a declarative paradigm to model flexible busi-
ness processes where execution of the process depends upon
the current case i.e. data produced by the process so far. How-
ever, it is very restricted due to data-driven approach and
does not cover all possible real scenarios. Pesic et al. [11] have
given a declarative language ConDec, based on Linear Tem-
poral Logic which consists of tasks and constraints (mainly for
control flow). Graphical representation of ConDec is also
complex to be used by business people. Goedertier et al. [10]
have presented a declarative language, Penelope which main-
ly focuses on sequence and timing constraints of a process
model.

2.3 Business Process to UML

 Mark H. Linehan [16] explores the work to specify the se-
mantics and rules in SBVR as extension of business models
that are automatically translated to PIMs which in turn get
converted to PSMs. This technology is known as Model Dri-
ven Business Transformation (MDBT). Here, PIM models in-
clude UML Class diagram, State Chart and Use Case Diagram.
But the paper doesn’t explicitly specify the algorithms and
there is no such information of how to find the function of the
classes too.

648

IJSER

International Journal of Scientific & Engineering Research Volume 4, (ÚÚÜÌɯƛȮɯ)ÜÓàɯƖƔƕƗɯɯ
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Markus Schacher [17] explores the work to view the Busi-
ness rules in the perspective of SBVR and CASSANDRA [18].
This paper develops an environment completely based on the
CASSANDRA platform to create executable UML Models (al-
so called xUML Models) from the Business Rules. It also pro-
vides a rule-set to transform SBVR Vocabulary and Rules into
Class Diagram, Use Case Diagram based on xUML platform.
This paper also shows how the business activities represented
in BPMN can be transformed to xUML Notation. Dane Soren-
sen et al., in his study [21] shows the lack of ontology in the
SBVR Metamodel and also shows how ontology integration
into SBVR could improve the future releases of this standard.
SBeaVer [22] is an open source SBR tool created by Maurizio
De Tommasi and Pierpaolo Cira at the University of Lecce‘in
Italy, in a project funded by the European Digital Business
Ecosystem [23] project. This tool runs as a plug-in for Eclipse
platform which enable the user to create, validate and verify
the business vocabulary and rules but this tool neither gene-
rates the logical formulation nor any platform independent
model.

3 SBVR BACKGROUND

SBVR is an abbreviated form of “Semantics of Business Voca-
bulary and Rules” which has been accepted by OMG in 2005.
OMG’s Model Driven Architecture (MDA) [24] is a multi
layered approach to implement a real world application. SBVR
is completely compatible with MDA and behaves as a Compu-
tational Independent Model. Compatibility with MDA in-
creases its adoption by several business organizations. SBVR is
an approach to allow the business analysts or any business
person, who is interested in writing the business rules, to ex-
press the business artifacts in natural language format. A
business person can write them in his own language and can
create a semantic model for it. This semantics model could be
same for different business designs in different languages be-
cause semantic metamodel of SBVR is totally independent of
representation [2].

The basic mantra of SBVR is ”Rules are built of fact types
and fact types are built of terms” which is clearly described
in Figure 2 with example.

Figure 2. SBVR Schema Model

SBVR has its own set of keywords and terminology to write

the business vocabulary and rules. Following is a little intro-
duction with its terminology given in [2].

3.1 SBVR BUSINESS VOCABULARY

SBVR Business Vocabulary is the collection of business enti-
ties, their instances and relationships between them, which
can be used by any organization in their writing and talking
during the course of their business.

1. Terms: These are the noun or group of words which
can be collectively used for the designation of a busi-
ness entity. For example: “car rental agency”.

2. Name: These are the words which are used to
represent the instance of a particular term. Eg. Hertz
that is an instance of car rental agency.

3. Fact Type: These are the sentences which represent
the relationship between terms. We are using the
template term-verb-term to establish the relation be-
tween two terms, as it is very obvious that a mutual
relationship between three entities can be easily break
down to maximum of three binary relations. For ex-
ample, the fact type ”customer owns account is mem-
ber” states that a customer is related with account and
account is related with member and a person who
owns an account will be a member. This relationship
can be breakdown to two relations as described by the
two fact type like “customer owns account” and “cus-
tomer is member”.

3.2. SBVR BUSINESS RULES

These are the sentences under business jurisdiction which
guide the structure and behavior of an organization.

1. Structural Rules: These are the rules which represents
how the business should be organized

2. Operative Rules: These are the rules which govern the
business execution.

3.3. PARSING SBVR BUSINESS VOCABULARY & RULES

SBVR allows the following four types of expressions as giv-
en in [2], to create the business vocabulary and rules. To parse
the business model given in SBVR, we have to just identify the
following four types of expressions:

1. Term: A noun or a group of words which collectively
designate a basic unit of knowledge. They always
start with small letters.

2. Name: These are the nouns or group of words which
starts with capital letter.

3. Verb: For parsing the verbs, there are two methods,
either create a list of all the existing verbs or ignore
the terms in fact types (term-verb-term) and get the
verb.

4. Keyword: There are some inbuilt keywords given in
[2]. Create a list of all the keywords and point out
them in the sbvr sentences.

3.4. LOGICAL FORMULATION

Every rule presents some semantics of a business artifact.
SBVR provides a structure to formulate that semantic which is
known as logical formulation. It is an abstract and language
independent syntax to represent the meaning of a rule as de-
scribed in Figure 3. Some of the terminology used in Figure 3
is not described in the paper but properly explained in [2].

649

IJSER

International Journal of Scientific & Engineering Research Volume 4, (ÚÚÜÌɯƛȮɯ)ÜÓàɯƖƔƕƗɯɯ
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

SBVR Specification [2] also provides a Meta Object Facility
(MOF) [25] representation of Logical Formulations.

Figure 3. Logical Formulation of a SBVR Rule

4 SBPVR: SEMANTICS OF BUSINESS PROCESS

VOCABULARY & PROCESS RULES

SBPVR follows the methodologies of SBVR [2] and Business
Rules Approach (BRA) [1] to describe process models. Follow-
ing the fact-oriented approach, SBPVR divides process know-
ledge into three parts; Process concept type, Process fact type
and Process rules. Figure 4 explains these categories with in-
stances from real world.

Figure 4. SBPVR Methodology

Definitions of these categories are:

1. Process Concept Type: represents a dynamic entity in
the process model. For example, task, event, interac-
tion etc. Instance of a process concept type
represents the state of affairs happening in the busi-
ness.

2. Process Fact Type: represents either characteristic of a
process concept type (unary fact type) or relation be-
tween two or more process concept types (binary or
n-ary fact type). Instance of a fact type represents re-
lation between instances of process concept types.

3. Process Rule: define constraints over the structure
and flow of the process.

4.1 VOCABULARY FOR DESCRIBING BUSINESS

PROCESS VOCABULARY
This section specifies the vocabulary to be used to describe
elements in the process model. Elements of process model and
their semantics are derived from existing work in the field of
process modeling (BPMN[4], Penelope [10], EPC [6], BPEL [5],
Case Handling Paradigm [9]) and in the field of process speci-
fication (PSL [26] and ebXML [27]). To provide a generic and
extendable meta-model, these elements and their semantics
are categorized in a hierarchical fashion. This categorization is
described in the next subsections.

4.1.1 PROCESS CONCEPT TYPE
Process concept type is the abstract class for all dynamic enti-
ties in the process model. Semantics of a process concept are
its relations to the happening on its enactment and changes
occurred due to its performance. Happening is the meaning of
the activity of change in business. For example, meaning of a
task type, “Place Order” is the actuality of an instance of Cus-
tomer giving Order to an instance of Salesman. A process con-
cept can be defined in the context of a business process. A
process concept type can generalize or specialize another
process concept type. Each process concept incorporates cha-
racteristics which make it unique in the model. Examples of
these characteristic are, “Concept Type” (task, event), “State”
(Start, Error, Finish) etc. Semantics of a process concept are
independent of the way of its execution. Figure 5 shows the
categorization of process concept type as explained in next
subsections.

4.1.2 WORK TYPE
Work type specializes process concept type and formulates
work to be performed or coordinated by an agent or a coordi-
nator respectively. Work type is a general concept for the ele-
ments which involve work to be performed (tasks, activities
and whole processes). In addition to characteristics of process
concept type, work type has a role binding with an agent
(SBVR: concept type). A work type may belong to one speech
community or can represent collaborative work between two
speech communities. It has a place holder for its owner (SBVR:
concept type). A work type has a purpose associated with it.
Work type has a placeholder for business rules which guide its
enactment. Output of work type can be represented in terms
of changes in state model. Following are the specializations of
work type on the basis of granularity:

1. Task Type: represents unit amount of work in the
process model.

2. Activity Type: represents a set of tasks, interactions
and events

3. Individual Process: represents a complete process
which achieves some business goal or provides some
service.

4.1.3 INTERACTION TYPE
Interaction type specializes task type in which a business doc-
ument (message or artifact) is being transferred during its
enactment. For the generalization of both orchestration and

650

IJSER

International Journal of Scientific & Engineering Research Volume 4, (ÚÚÜÌɯƛȮɯ)ÜÓàɯƖƔƕƗɯɯ
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Fig. 5. SBPVR Process Concept Types

choreography processes, interactions are first class concepts in
the SBPVR. An interaction has two role bindings, requesting
role and responding role associated with it. This binding
represents transfer of business document from responding
role to requesting role.

4.1.4 EVENT TYPE
Event notifies changes in the state model to process concepts.
Happening of an event is instantaneous. Event has triggers
associated with it which cause its occurrence in the process.

4.1.5 EVENT TYPE
State model represents state of the business at one particular
point of time. SBPVR models are represented by process
schema, which includes process concept types, process fact
types and SBVR:conceptual schema. State model is an instance
of process schema in one possible world scenario at one point
of time.

4.2 PROCESS FACT TYPE
A process fact type is a relation between two concept types (at
least one is process concept type.jpg). The relation can be be-
tween a dynamic entity (process concept type) and a static
entity (SBVR:Concept type) or only between dynamic entities.
A process fact type is based on a verb concept (process fact
type role) which binds two or more entities in semantic rela-
tion. Semantics associated with a process fact is the kind of
relationship between concepts. SBPVR divides these relation-
ships in seven categories. These categories and respective ex-
amples are shown in Figure 6.

4.3 PROCESS RULES IN SBPVR
In SBPVR, process rules are statements which constrain or
guide business behavior in the context of business processes.
In traditional procedural languages, these constraints or de-
sign decisions are either hidden or defined implicitly. In
SBPVR, process rules are extracted from the process diagram
and represented separately. A process rule can have two kinds
of guidance (based on SBVR’s categorization of guidance):

1. Structural Guidance: claims necessity on the struc-
ture of process models and cannot be violated during
the process enactment.

2. Operative Guidance: claims obligation on the beha-
vior of process models.

Another popular categorization of rules is given by Taveter el
al. [28]. They have classified rules into four categories; Integri-
ty constraints, Derivation rules, Reaction rules and Deontic
assignment. Muninder et al. [29] have shown that business
protocols can be described using commitments over the
agents. Hay [30] has categorized rules into structural assertion,
action rules and derivation rules. He also included authoriza-
tion rules. Goedertier et al. [31] have given sixteen types of
rules divided into three categories (Control flow, Data Aspects
and Organizational Rules). These categories are influenced by
work of Jablonski et al. [32]. SBPVR does not aim to restrict
itself to few specific types of rules but to provide an abstract
classification of process-aware business rules.

In SBPVR, process rules are categorized into five categories,
influenced from the work of Wagner et al. [28]. Since SBPVR
only targets the rules which are defined in the context of a
process, definitions and boundaries of above categories are
defined in the context of a process. Following subsections de-
scribe these five categories and for each category, they also
specify few kind of types belonging to that category. SBPVR
does not aim to restrict itself to only the mentioned types and
they can be extended by enterprises. Figure 7 shows the cate-
gorization of process rules in SBPVR.

4.3.1 INTEGRITY RULE
Integrity rule constrains flow or integrity of a process model.
In SBPVR, dynamic entities and state transitions are
represented by concept types and fact types respectively. Inte-
grity rules guides to maintain integrity of state model in the
operations where instances are added or deleted from state
model. Following are few types of integrity rules:

651

IJSER

International Journal of Scientific & Engineering Research Volume 4, (ÚÚÜÌɯƛȮɯ)ÜÓàɯƖƔƕƗɯɯ
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Figure 6. Process Fact Types in SBPVR

Fig. 7. Process Rules in SBPVR

1. State Transition Constraint: This rule controls transi-

tion of a process concept from one state to another.
Constraints are formulated by existence or non-
existence of facts in the state model.
Example: It is necessary that accept order starts only if
user has order and user is valid (activity precondition).It is
necessary that accept order is completed only if order is ac-
cepted(activity post condition).

2. Fact Change Constraint: This type of rule constrains
the change of fact types in state model.
Example: It is not possible that fact type, order is rejected,
changes to order is accepted.

3. Cardinality Constraint: This type of rule constrains
the number of instances of a concept type in the con-
text of another concept type.
Example: There exists exactly one accepts order activity as
a part of handle order process.

4.3.2 REACTION RULE
This rule specifies actions to be taken on the occurrence of
process fact types in the state model. This rule constrains state
transition of one process concept in the presence of another
process fact (e.g., event being triggered).
Example: When pending customer event triggers, It is necessary
that handle customer process starts.

4.3.3 DERIVATION RULE
Derivation rules are rules where element of knowledge is de-
rived from existing concepts. SBPVR supports full derivation
using if-and-only-if (equivalence) or partial derivation (using
if) keywords.
Example: Accept order activity is completed if and only if user
is valid and order is accepted.

4.3.4 DEONTIC ASSIGNMENT
This rule expresses power, right or duty of an agent on its role
in process model. Examples of this type of rules are:

1. Authorization: In this type of rule, commitments are
assigned to agents to perform or co-ordinate work
concept. This assignment depends upon the proper-
ties of work concept, properties of agents and state
model.
Examples: It is the duty of salesman that salesman per-
form take order activity. It is the right of supervisor that
supervisor performs reject order activity.

2. Event Subscription Constraint: This type of rule con-
strains the agents to perceive events in the process.
Example: It is not permissible that a vendor perceivesac-
cept order event if that order is of price less than $1000.

652

IJSER

International Journal of Scientific & Engineering Research Volume 4, (ÚÚÜÌɯƛȮɯ)ÜÓàɯƖƔƕƗɯɯ
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Fig. 8. Car Rental Process in BPMN

4.3.5 EXECUTION RULE
This rule constrains or guides execution order of process ele-
ments. Although, SBPVR does not specify exact execution path
of a process model, some constraints or advices to execution
platform might be necessary to define at design time. For ex-
ample, exclusiveness of two activities can constrain execution
plan of process model. Examples for this type of rules are:

1. Serial Order Constraint: This rule constrains whether
two activities can be executed in sequential or parallel
order.
Example: It is not possible that interview-process and
written-exam of a candidate occur at the same time.

2. Activity Inclusion/Exclusion Constraint: This rule
specifies inclusiveness or exclusiveness of activities.
Example: If reservation process includes flight-booking
and reservation process includes hotel-reservation than it is
necessary that reservation process includes free-carpickup
process.

5 REPRESENTATION OF SBPVR

5.1 SYMBOLIZATION
SBPVR separates meaning of a concept from its representation.
Similar to SBVR, process concepts or fact types are represented
through designation. Designation for concept type is term,
name or non-verbal (e.g., Icon). For fact type, designation is
fact type form.

5.2 FORMS OF BUSINESS REPRESENTATION
Business representation also includes other forms to support
meaning of concept or fact type. In SBVR, these forms are de-
scription, descriptive examples, note, comment, remark and
reference. Additional forms of representation in SBPVR are:

1. Supported Fact Types: They for describing SBVR:fact
types associated with a process concept. This repre-
sentation helps in specifying relationship between
SBVR vocabulary model and SBPVR process model.

2. Process Context: It represents context of another con-
cept type in which it is defined.

3. Business Goal/Purpose: It represents business goals,
tactics or strategies associated with a concept. Formal
representation of these goals is out of the scope of
SBPVR.

4. NFRs: A process concept might have non-functional
requirements associated with it e.g., compliance is-
sues, performance, security, legal issues et cetera.
SBPVR does not provide formal representation for

NFRs and they can be represented in natural lan-
guage or using any domain specific ontology.

5.3 EXAMPLE PROCESS IN SBPVR
Following is an example of Car Rental Process modeled in
SBPVR. Definition of the sample Car Rental Process is taken
from Knowgravity Inc. [33]. Figure 8 represents BPMN nota-
tion of the process. Section V-D and Section V-E describe
SBVR and SBPVR models of the process respectively. For
SBVR model, Structured English Representation (term, verb
and keyword) [2] is used. SBPVR process concept types are
represented using font sbpvr concept type. Other examples of
end-to-end processes modeled in SBPVR are presented in [34].

5.4 SBVR MODEL
The sample process taken is a part of EU-Rent example of
SBVR specification [2] which contains complete SBVR model
of the same. Thus the SBVR model is not presented here and
can be found at [2]. This SBVR model is used to define SBPVR
elements.

5.5 SBPVR MODEL
Due to limitation on paper-size, only a part of SBPVR model of
the Car Rental Process is presented here for reference. Com-
plete model of this process and other sample processes are
presented in [34].

• calculate price

Concept Type Task type

Supported Fact
Type

Salesman calculates rental
charge
Rental has rental charge

Supported Rules It is necessary that the rental
charge of each rental is calcu-
lated in the business currency
of the rental.

• salesman performs calculate price

 Concept Type Role binding fact type

• get payment

Concept Type Interaction type

Supported Fact
Type

Salesman receives payment
from renter

• salesman is requesting role of get payment

Concept Type Role binding fact type

653

IJSER

International Journal of Scientific & Engineering Research Volume 4, (ÚÚÜÌɯƛȮɯ)ÜÓàɯƖƔƕƗɯɯ
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

• renter is responding role of get payment

Concept Type Role binding fact type

• get payment transfers payment

Concept Type Interaction process fact type

• create invoice

Concept Type Task type

Supported Fact
Type

Salesman creates rental in-
voice

• process rental

Concept Type Activity type

• process rental includes calculate price

Concept Type Partitive process fact type

• process rental includes create invoice

Concept Type Partitive process fact type

• process rental includes get payment

Concept Type Partitive process fact type

• process rental includes assign car

Concept Type Partitive process fact type

• sales office coordinates process rental

Concept Type Role binding fact type

• It is necessary that check rental starts only if salesman

has rental details
• It is necessary that process rental starts only if rental
 is acceptable
• It is necessary that create invoice starts only if rental
 has rental price
• It is obligatory that get payment starts only if rental

has rental price
• It is necessary that assign car starts only if salesman
 received payment
• It is the duty of sales-office that salesman performs

check rental

6. SBPVR TO UML ACTIVITY DIAGRAM
Not all the rules will participate in the construction of AD, as
it shows the execution behavior not the structure. Ignoring the
structural rules, we will consider only operative rules. A sub-
set of those operative rules will help in generating the AD and
we will name them as the automatable rules. Logical formula-
tion of automatable rules will be used to create the activity
diagram. Automatable rules are generally in the form of if-
then or ECA format [35]. Logical formulation of these rules is
defined as implications in SBVR. Implications will help us to
find out the activities and their precondition. Looking up at all
the implications until they get finished, will help us to find out
the activities and their preconditions and sequence between
those activities. Last implication will help us to find out the

last activity and bring us to end state. A detailed discussion of
this methodology is given in following sections.

6.1 CATEGORIZATION OF RULES

The business rules can be categorized as structural rules
and operative rules. As described in the above section, struc-
tural rules will only participate in the structure of the business
organization but would not guide the business flow. Opera-
tive rules are the rules which will guide the business flow, so a
distinction between the operative and structural rules is re-
quired, which has been done in the SBVR Specification [2]. As
our intension is to draw the execution behavior of a system on
a UML Activity diagram, we must consider only operative
rules ignoring the structural rules. But not all the operative
rules will participate in activity diagram, so we again categor-
ize them according to [17] as given below:

• IT Support is automated: These are the rules which
should be completely handled by IT system without
any intervention of human user. We will refer these
rules as automatable rules for rest of the discussion.

• IT Supported is supported: These are the rules which
are supported by IT system and expect some human
interventions.

The rules which are completely supported by IT will be
named as automatable rules for rest of the paper, and these
rules will be used to create the AD. Business rule writer is the
only person who knows which rules are automatable and not.
We will allow him to express this knowledge with rules at the
time of writing the rules. A typical SBVR business rule signa-
ture includes some attributes whose detailed discussion is giv-
en in [2]. The ’enforcement level’ attribute tells how to enforce
the rule. A details list of different level of enforcement is given
in [2] based on Business Motivation Model [36], but there is no
level which would inform us about whether a rule is automat-
able or not. So, we have added another level named ”auto-
matable” which will compensate for the information required,
as given in Figure 9. The result of adding the level ”automata-
ble” will result in detection of automatable and non-
automatable rules at the time of writing rules. If the user sets
enforcement level as automatable, it means that this rule
should be completely handled by the IT system and partici-
pates in generating the activity diagram.

Fig. 9. Rule Signature for automatable rule

6.2 LOGICAL FORMULATION OF AUTOMATABLE RULES
Automatable rules generally show the execution of activities
and most of the activities should be guarded by some precon-
ditions. This is why most of the automatable rules exist in if-
then construct in SBPVR, but they may exist in some more
constructs. For this paper, we are mainly handling if-then con-
struct. In SBPVR, the logical formulation of if-then rules is giv-

654

IJSER

International Journal of Scientific & Engineering Research Volume 4, (ÚÚÜÌɯƛȮɯ)ÜÓàɯƖƔƕƗɯɯ
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

en as “Implication”. An if-then rule relates the activity and its
preconditions with the consequent and antecedent of the im-
plications, respectively, as shown in the Figure 10. To deduce
the ”if p then q else r”, we will decompose the else part again
in ”if-then” construct. For example

if p then q else r
can be decomposed as

if p then q and if !p then r

Fig. 10. Logical formulation of if-then rules

6.3 FACT TYPES: ACTIVITIES IN AN ACTIVITY DIAGRAM
As we have already discussed that a fact type can be
represented as term-verb-term. A verb can be of two types,
one which imply some action (transitive verbs) and other
which doesn’t imply any action (intransitive verbs). The
statements involving the transitive verbs will represent some
action. For example, the fact type “create invoice starts” is a
statement which include a transitive verb ”starts” and shows
an action “start of invoice”. These types of fact types can be
assumed as the activities. The fact types having intransitive
verb e.g. ‘has’ or ’is of’ will not be considered as the activities
because they show the structural nature not the imperative
nature. For example, “rental has rental price” shows a posses-
sion not an activity.
Naming of activities can be done in the following two ways:

1. Direct Naming: Use the fact type directly as the activ-
ity name.

2. Objectification: Use the objectification of fact types.
SBVR has a provision for giving instances of fact
types a type name; it is called “objectification” [2]. For
example, an occurrence of the fact type “salesman
receives payment” might be objectified as an “receive
payment”. An objectification allows us to predicate
things about a fact type, like how, when and where
they happened, etc. Each activity in a UML AD may
correspond to an objectification. The corresponding
transformation turns the fact type into a command to
bring such an action into existence. Use of the infini-
tival form of the verb phrase of the underlying fact
type for an activity name might be preferred, to re-
flect the imperative nature of the activity: “receive
payment,” the successful outcome of which is an
”payment received”, which is a state of affairs (event)
that salesman has received a payment.

The fact types associated with the automatable rules will be
used to form an ordered set of commands. It is a very sensitive
and non-trivial process as it must consider both linguistic and
logic especially the temporal aspects all of which may not be

specified directly in the set of declarative rules. This transfor-
mation must be logically consistent with the conceptual sche-
ma of SBVR.

6.4 SBVR TO UML ACTIVITY DIAGRAM MAPPING

RULES
This section mainly deals with the mapping of SBPVR to UML
Activity diagram.

6.4.1 INITIAL NODE: This is the start state of the activity dia-
gram. It doesn’t play a very important role but significantly
shows the starting point of a scenario. We have given it a de-
fault name “start”.

6.4.2 ACTIVITY NODE: As we have already discussed, the
fact types having transitive verbs will be assumed as the activ-
ity node.

6.4.3 ACTIVITY EDGE: An activity edge is a set of events,
guard conditions and actions which allows the transition from
one activity node to another activity node. An event is the
trigger of the transition. Upon triggering the transition, the
condition is checked, if the condition holds true, then the cor-
responding action occurs and brings another activity into exis-
tence. It is not necessary that a transition must have trigger.
Transitions without the trigger are known as trigger less tran-
sitions. A typical SBPVR operative rule may be written as:
 upon event, if <propositional expression 2>,
 then <propositional expression 1>.
But we are using the following format of operative business
rules in SBPVR
<propositional expression 1>[if<propositional expression 2>]

So, the mapping from these types of SBVR rules to UML AD
will create the trigger less transitions. The propositional ex-
pression 2 will help to find out the guard condition and prop-
ositional expression 1 will help to find out the action.

• Guard Condition: Assume an operative business rule
like given below:
It is necessary that assign car starts only if salesman
received payment
The propositional expression 2 in if clause refers to
the fact type ‘salesman received payment’. Depending
upon the fact type, we are creating a boolean variable
like ‘received payment’. And the guard condition will
become ‘received payment == true’ as shown in Table
I.

Table I
Fact Types (Activities) And their Pre-Conditions

Fact Type Boolean Variable Pre-condition

salesman re-
ceived payment

received_payment received_payment
= true

assign car start car_starts car_starts=true

• Action: These are the actions which should be in-

voked during the transition from one activity to
another. For example in the above rule, if a salesman
received payment, then the “rented car start”. What

655

IJSER

International Journal of Scientific & Engineering Research Volume 4, (ÚÚÜÌɯƛȮɯ)ÜÓàɯƖƔƕƗɯɯ
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

we are doing is taking the propositional expression 1
and find out the corresponding fact type. Merging of
verb and last term of the fact type will create the
name of the action like “car starts()” as shown in Ta-
ble II.

Table II
Fact Types (Activities) and corresponding Actions

Fact Types Corresponding Actions

salesman received payment payment_received()

assign car start car_starts()

6.4.4 FORK/JOIN NODE:

• Fork Node: This is a pseudo-state where one transi-
tion is coming and multiple parallel transitions are
going out of it. A SBVR rule like “it is necessary that
assign car starts and travel time starts only if sales-
man received payment” represents the enforcement
of two activities “assign car starts” and “travel time
starts” when salesman received the payment. This
situation will generate the fork state. There will be an
incoming transition having the guard condition “re-
ceived payment=true” and two outgoing parallel
transitions pointing toward activities “assign car
starts” and “travel time starts”.

• Join Node: This is another pseudo-state where mul-
tiple parallel transitions are coming and only one
transition is outgoing. The generation of this state will
be same as the above except there will be multiple
guard conditions and only one outgoing transition.

6.4.5 ACTIVITY GROUP
The ActivityGroup in UML activity diagrams are generally
known as swimlanes which basically represents who is doing
the activity. The entity doing an activity will be referred as the
giver of the activity. As we have already discussed that the
representation of fact type (activity) can be of two type, active
form and passive form. In a sentence having an active, transi-
tive verb, the giver of the action of the verb is the subject of the
sentence. In English, the “giver” corresponds to the object fill-
ing the role of the first placeholder in the fact type form, e.g.
“customer” in “customer places order.” If the fact type form is
passive, e.g. “order is placed by customer,” it is the reverse.
These mean the same thing. They are synonymous forms.
Facts of either of these forms would be logically equivalent.

6.4.6 ACTIVITY FINAL NODE
This is the point in an activity diagram where all the activities
get end up. We are creating a default end state with the de-
fault name “End”.

7. RULE SEQUENCING ENGINE
Rule Sequencing Engine (RSE) is an engine used to establish
the order between activities. The engine consist of a data struc-
ture (RSE-DB) used to contain the guard conditions which
have been occurred as true and a decision unit to decide the
next activity. For example, if we encounter a rule like below,
then the fact type corresponding to if clause is “salesman re-
ceived payment” and the corresponding guard condition be-

comes “received payment = true”.

It is necessary that assign car starts only if salesman received
payment

The RSE search its RSE-DB for this condition to be true, if the
condition exist and holds true, then the fact type ‘assign car
starts’ corresponding to then clause will be the next activity.
After getting the next activity, a boolean variable ‘car starts’ is
created and get set to true and inserted into the database. This
concept is motivated from OMG’s Production Rule Represen-
tation (PRR) [37] and RETE Algorithm.

8. ALGORITHM
The vocabulary and rules are parsed that instantiate the SBVR
Meta-Model given in [2]. Chapter 9 in [2] deduces the logical
formulation of a SBVR business rule. The logical formulation
of an automatable operative business rules will be of our in-
terest at the moment, as we are modeling the activity diagram.
Since we are generating the UML AD based on the business
artifacts given only in if-then rules, there must be exactly one
automatable rule which would not have any if clause. This is
because the absence of pre-condition will allow the activity to
occur initially. If there is more than one such rule, then there
will be two transitions from start state which is against the
UML AD Semantics. It is only possible if those two activities
occur in parallel, which will be modeled as fork in AD. The
fact type corresponding to the automatable rule having no if
clause will be the first activity. Create a boolean variable as
shown in the section 6.4.3, assign it as true and put into the
RSE-DB. The detection of further activities will be done with
the help of “implications” given in SBVR Metamodel.

After deducing the logical formulations, we will look up at all
the ‘obligation claims’ [2] that are ‘implications’ to find out the
relation between the fact types of ‘if’ construct (antecedent of
the implication) and those of ‘then’ construct (consequent) in
an if-then construct. To find out the next activity, check the
RSE-DB to known whether the guard condition corresponding
to the fact type in antecedent is true or not. If the guard condi-
tion holds, find out the fact type corresponding to consequent
of the implication and make it as the next activity and also
create a corresponding Boolean variable with assigning ”true”
value and put it into the database of RSE. Also, create a transi-
tion from previous activity to the current activity as explained
in section 6.4.3. If the guard condition doesn’t holds, then
search for the next implication until all the implications get
visited. The absence of such an implication will result in the
end state.

The flow chart shown in Figure 11 presents a general algo-
rithm to find out the activity diagrams. The special situations
like an activity doesn’t have any outgoing transition, fork and
join; multiple incoming transitions to the end state are not
shown in the flow chart. They can be directly hard coded on
top of the basic algorithm shown in above flow chart.

656

IJSER

International Journal of Scientific & Engineering Research Volume 4, (ÚÚÜÌɯƛȮɯ)ÜÓàɯƖƔƕƗɯɯ
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Fig. 11. Flow Chart of SBVR To UML Activity Diagram
Transformation

8. SBPVR TO UML SEQUENCE DIAGRAM
The scenarios within an environment can be represented as a
sequence diagram which is described in [38]. Whittle et al. [38]
illustrate that a sequence diagram can be represented as the
set of messages with the information of their source and desti-
nation object in a sequential manner which is represented be-
low:

 src1 →msg1→dest1; src2 →msg2→dest2; ….. srcn →msgn→destn;

To draw the sequence diagrams for the scenarios described by
SBPVR Rules, we will use the AD generated in the last section.

8.1. MAPPING SBPVR TO UML SEQUENCE DIAGRAM

ELEMENTS
The SDs requires the messages having proper sequence be-
tween them along with their source and destination object
information. The AD contains the activities with proper se-
quence but don’t give any information about the objects. In the
following sections, we will see how the activities and their
sequence in AD can be used to create SDs.

8.1.1 MESSAGE: The messages in a SD are responsible for
the occurrence of events and actions in the sequence diagram.
Due to its logical similarity with the activities of AD, they can
be given the same name as of the activities. For example, the
activity “salesman received payment” in an AD can be a mes-
sage in a SD. The messages toward the life line of an object

show the event on the object while the messages away from an
object are considered as the actions of that object.

8.1.2 SOURCE OBJECT OF A MESSAGE
The source object of a message will be the ‘doer’ of activity
having same name as of that message. The semantics of ‘doer’
is same as the ‘subject’ in an English sentence having an active
verb. The subject is the noun who performs the action of the
verb. In SBVR’s structured English, a sentence having an ac-
tive, transitive verb, the ‘doer’ of the action of the verb is the
object filling the role of the first placeholder [2] in the fact type
form e.g. “salesman” in “salesman receives payment”. If the
fact type form is passive e.g. “payment received by salesman”,
then the ’doer’, would be the object filling the role of last
placeholder. The above two sentences have the same meaning
and must be presented as the synonym of each other by BA
during the development of Vocabulary. However, it is prefer-
able to use the active form wherever possible. The above two
fact type forms would have the same logical formulation or
logically equivalent.

8.1.3 DESTINATION OBJECT OF A MESSAGE
The destination object of a message is one at which a message
gets end up. That object will be the active object in the system
means the execution control will retain with this object only.
Every message has its own source and destination. For exam-
ple take two messages as shown below:

source1 → message1 → destination1

source2 → message2 → destination2

Assume message2 is next to message1 in the sequence. Af-
ter the occurrence of message1, destination1 will be the active
object and for the occurrence of message2, source2 should be
the current active object. This implies that destination1 should
be same as source2 as shown below. It implies that the desti-
nation of a message will be the source of the next message in
the sequence.

source1→ message1 → destination1 = source2 → message2

8.1.4 STATE INVARIANT
An object in its life-time, passes through several states. These
states are the different configuration of variables of the object.
For example, the object “salesman” has the variables ‘renal
details’ and ‘payment’ of type string where “renal details=d
and payment=null” represents a state of “salesman”. The state
change of the object occurs due to their action and events. For
example, the action “salesman receives payment” will change
the value of ‘payment’ variable as “payment=p” and results in
a new state (new configuration) of salesman “renal details=d
and payment=p”. The invariants of the state can be attached in
many ways like in plain English or Object Constraint Lan-
guage (OCL) [39]. It depends upon the user and his require-
ments, how to attach them.

8.1.5 GENERAL ORDERING
The general ordering in UML SD Metamodel [40] is a partial
ordering between the two messages. So, we will look up only
at the two activities in UML AD generated above and map
their ordering to the general ordering of messages.

657

IJSER

International Journal of Scientific & Engineering Research Volume 4, (ÚÚÜÌɯƛȮɯ)ÜÓàɯƖƔƕƗɯɯ
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

8.2 ALGORITHM
The generation of UML SD involves the collaboration of both
UML AD and SBVR Metamodel. The flow chart for this trans-
formation is shown in Figure 12. The algorithm tries to find
out the messages of the SD. According to [41], only activities
of the AD can be transformed to messages of the SD. Hence,
we will set all the activities of AD as the messages of SD. The
first activity in AD will be mapped to the initial message of
SD. And the action corresponding to this initial message will
be the same as the action corresponding to that activity in AD.
This action will become the send event of the destination mes-
sage end. We will generate the general ordering of messages
through the sequence between the activities in AD. The next
thing is to find out source and destination life lines for a mes-
sage. A detailed discussion of algorithm is given below.

The name of a message would be the name of activities
which in turn is the fact types. In SBVR metamodel, each fact
type has some roles which are situated at some placeholder. If
the fact type (which is a message in SD) is in active form, the
source life line of the message will be the term at first place-
holder else it will be the term at last placeholder. To find out
the destination life line, we will look up at the next message of
current message in general ordering. The source of the next
message will be the destination life line of current message as
described in section 8.1.3. This whole process is repeated again
from finding the next activity, creating a message and finding
the source and destination lifelines for messages, until we will
not traverse all the activities in AD and reach the end state
from all the possible paths. There may be some consecutive
activities in AD whose sources are same. For example the con-
secutive activities “salesman receives userdetails” and “sales-
man receives payment” have the same source ‘salesman’. In
this case, the message corresponding to the activity “salesman
receives userdetails” will be a self message. A self message is a
message whose source and destination are same. Due to this
self message, the active object after the occurrence of this mes-
sage will remain the same which is ’salesman’. And next mes-
sage “salesman receives payment” will be sent from the object
’salesman’. It may also happen that the activity next to current
activity doesn’t exist in an AD, for instance, the activity is the
immediate previous to the end state. In this case, this activity
does not have any next activity. We may have to compromise
as there is no information for the next object. If we see the
messages, they are transferring the control to the next destina-
tion object. And if there is no information about the next active
object to take over the control, we have to keep the control to
current object. Due to which, the destination life-line for this
message will be the same as source life line. This is a limitation
of this approach. In this approach, we are missing the detec-
tion of actors. As our intension is to map the SBPVR Metamo-
del to UML SD metamodel not the UML SD syntax, this is not
important at the moment as UML SD Metamodel doesn’t in-
clude any entity like actors.

Fig. 12. Flow Chart of SBVR To UML Sequence Diagram
Transformation

9. SBPVR TO UML CLASS DIAGRAM

The SBPVR statements are declarative in nature. These
statements are used to declare the structural and operative
behavior of a system. The structure of the system mainly in-
volves the classes, attributes, functions and relationships be-
tween those classes. For example, ‘salesman’ is a class that is a
SBPVR term and ‘salesman has rental details’ is a SBPVR fact
type that shows the class ‘salesman’ has an attribute of type
‘rental details’. The business rules determine the correct value
of the properties that an object will have and methods of de-
riving the information needed by a class. Appendix H in SBVR
Specification [2] gives a mapping from the SBVR Vocabulary
and Rules to the CD but it is not sufficient as it does not give
any information about the functions of business objects. The
contribution of this paper is a mechanism to find out the func-
tions of the classes, association between them and cardinalities
for association ends. Some of the important rules of the map-
ping are described here.

• Class Name: These are the nouns or group words
which are used to define a concept and starts with
small letter. They are represented as classes in UML
CD.

658

IJSER

International Journal of Scientific & Engineering Research Volume 4, (ÚÚÜÌɯƛȮɯ)ÜÓàɯƖƔƕƗɯɯ
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

• Instance Name: The individual concepts behave as an
instance of a particular class. The name is followed by
a colon and then by the term for its general concept
[2]. E.g. The Name ‘John’ is an instance of the class
‘salesman’ as shown in Figure 13.

Fig. 13. Class and its instance name
• Attributes: For the binary fact types [2] that have

’has’ as the conjunction, the term at the last place-
holder will be represented as an attribute of the class
if the sentence is the active sentence else it will be the
term at first placeholder. For example, in a binary fact
type in active form ‘salesman has rental details’, the
class ‘salesman’ will have an attribute of type ‘rental
details’. In general, a unary fact type is transformed
into a UML Boolean attribute. For example, in the un-
ary fact type ‘rental car starts’, the class ‘rental car’
will have a boolean attribute ’isStarted’ as shown in
Figure 14.

Fig. 14. Class and its instance name
• Generalization/Specialization: The SBVR Specifica-

tion says that ’concept1 specializes concept2’ and
’concpet1 generalizes concept2’ that means a term can
be specialized form or a generalized form of another
concept. For example, in SBPVR, there is a term ‘sa-
lesman’ that is a role of ‘Employee’. In this example,
the term “salesman” is a specialized role of ‘Em
ployee’. So, the class corresponding to the term ‘sa-
lesman’ will be a subclass of the class corresponding
to the term ‘Employee’ as shown in Figure 15.

Fig. 15. SuperClass and SubClass.

• Functions: SBVR specification helps us to construct
the CD but does not give any information about func-
tions of classes. Before we draw the class diagram, we
should know which function belongs to which class.
To find out this information, we will follow the same

approach as we followed to generate the SD. In a SD,
one object interacts with another by sending it a mes-
sage. For instance, the ‘salesman’ sends a message
”salesman received payment”. In the sequence dia-
gram, this message is associated with an action “re-
ceive payment()”. Whittle et al., [38] has suggested a
relationship between SD and CD that help us to con-
clude that the action corresponding to the messages
will become a function for the source object that is ‘sa-
lesman’. So, the class ‘salesman’ will have the func-
tion “receive payment()”. The paper is not able to find
out the return type and arguments of these functions
at the moment. We will recommend the user to set
these entities manually.

• Association: The association between the classes can
be figured out from fact types. Binary Fact types [2]
actually establish the relationship between the two
business entities. For example, the fact type “sales-
man receives payment” establishes the relationship
between the salesman and payment.

• Multiplicity: There are some constraint rules which
constraint an association between the two classes. In
these rules, the quantifier associated with a term tells
about the cardinality at association ends. For example,
the following rules says that each customer rents at
most one car. The quantifier ’at most one’ tells that
the multiplicity at ’car’ end should be ’0..1’ as shown
in Figure 16. This concept is motivated from [18].

It is necessary that each customer rents at most one

car.

It is necessary that each customer contacts exactly one

rental office.

It is necessary that each rental office employ at least

one saleman.

Fig. 16. Multiplicity and association between classes

10. CONCLUSION
In this work, we have made an initial attempt to define a ge-
neric meta-model named, SBPVR, for declarative business
process modeling. SBPVR follows SBVR’s fact oriented ap-
proach and process models in SBPVR are built over SBVR vo-
cabulary & rule models. SBPVR categorizes process know-
ledge into process concept types, process fact types and

process rules. We have extended these categories further, to

659

IJSER

International Journal of Scientific & Engineering Research Volume 4, (ÚÚÜÌɯƛȮɯ)ÜÓàɯƖƔƕƗɯɯ
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

represent various process elements and their semantics. Bene-
fits of the declarative nature of SBPVR are flexibility and adap-

tability which are critical requirements for knowledge inten-
sive and dynamic process models. SBPVR enables integration

between rule model and process model, which covers maxi-
mum representational constructs using uniform methodology.

We have presented a methodology to generate UML AD, SD
and CD from the SBPVR model driven business process. These
business processes are CIMs and UML models are PIMs in

MDA. SBPVR allows developing the business process vocabu-
laries which include the basic business terms and fact type,

and business rules. The work in the paper basically bridges
the gap between business modeling people and IT people. The
business people who are interested in writing the business

processes will write them in SBPVR that needs some external
efforts to extract the imperative nature embedded in those
declarative sentences. This imperative nature can be shown in

UML and BPMN too. We have chosen UML because it is more
efficient and adaptable for example, a UML AD can be used as

a workflow specification language and also they are very effi-
cient for reverse and forward engineering. Main contribution
of this paper is to bridge the gap between business people and

IT people by allowing them to convert business processes into
platform independent UML AD, SD and CD, which can be
further transformed to application code to check any inconsis-

tencies between the actual and intended behavior.

REFERENCES

[1] R. G. Ross, Principles of the Business Rule Approach. Addison-Wesley

Information Technology Series, 2003.

[2] “Semantics of business vocabulary and rules specification,” Object

Management Group, March 2006.

[3] M. Z. Muehlen, M. Indulska, and G. Kamp, “Business process and

business rule modeling: A representational analysis,” in EDOCW ’07.

Washington, DC, USA: IEEE Computer Society, 2007, pp. 189–196.

[4] O. M. Group, “Business Process Modeling Notation (BPMN),” January

2008, http://www.omg.org/spec/BPMN/1.1/.

[5] OASIS, “Web Services Business Process Execution Language

(WSBPEL),” http://www.oasis-open.org/home/index.php/.

[6] A.-W. W. Scheer, Aris–Business Process Modeling. Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 1998.

[7] W. M. Van Der Aalst and A. H. M. Ter Hofstede, “Verification of

workflow task structures: A petri-net-based approach,” Inf. Syst., vol. 25,

no. 1, pp. 43–69, 2000.

[8] O. M. Group, “Unified Modeling Language: Activity Diagram,”

http://www.uml.org/.

[9] W. M. P. van der Aalst and M. Weske, “Case handling: a new paradigm

for business process support,” Data Knowl. Eng., vol. 53, no. 2, pp. 129–

162, 2005.

[10] S. Goedertier and J. Vanthienen, “Designing compliant business

processes with obligations and permissions,” Business Process Manage-

ment Workshops, pp. 5–14, 2006.

[11] M. Pesic and W. van der Aalst, “A declarative approach for flexible

business processes management,” 2006, pp. 169–180. [Online].

Available: http://dx.doi.org/10.1007/11837862 18

[12] W. M. P. van der Aalst and M. Pesic, “Decserflow: Towards a truly

declarative service flow language,” in The Role of Business Processes in

Service Oriented Architectures, 2006.

[13] S. W. Sadiq, M. E. Orlowska, and W. Sadiq, “Specification and valida-

tion of process constraints for flexible workflows,” Inf. Syst., vol. 30, no. 5,

pp. 349–378, 2005.

[14] A. Raj, T. V. Prabhakar, and S. Hendryx, “Transformation of sbvr

business design to uml models,” in Proceedings of the 1st India software

engineering conference, ser. ISEC ’08. New York, NY, USA: ACM, 2008,

pp. 29–38. [Online]. Available: http://doi.acm.org/10.1145/1342211.1342221

[15] A. Agrawal, “Semantics of business process vocabulary and process

rules,” in Proceedings of the 4th India Software Engineering Conference,

ser. ISEC ’11. New York, NY, USA: ACM, 2011, pp. 61–68. [Online]. Avail-

able: http://doi.acm.org/10.1145/1953355.1953363

[16] M. H. Linehan, “Semantics in model-driven business design,” Mod-

els/UML Conference, 2001.

[17] M. Schacher, “Moving from zachman row 2 to zachman row 3,” Busi-

ness Rules Journal, vol. 7, no. 6, June 2006.

[18] “Executable uml specification,” Object Management Group, May

2004.

[19] H.-E. Eriksson and M. Penker, Business Modeling with UML: Busi-

ness Patterns at Work. New York: John Wiley and Sons, Inc., 2000.

[20] P. Musham, S. Singh, R. Bahal, and P. Tv, “Visual SBVR,” in Digital

Information Management, 2008. ICDIM 2008. Third International Confe-

rence on, November 2008, pp. 676–683.

[21] D. Sorensen, A. Pastiak, A. Mitra, and A. Gupta, “Integrating ontology

into sbvr,” Eller College of Management, Report 1033, 2006, uRL:

http://www.knowgravity.com/pdf-e/CASSANDRA xUML E.pdf.

[22] D. T. Maurizio and C. Pierpaolo, “Sbeaver business modeler editor,”

uRL: http://sbeaver.sourceforge.net/.

[23] “Digital business ecosystem project, ”an internet based software envi-

ronment in which business applications can be developed and used”,”

Project, uRL: http://www.digital-ecosystem.org/.

[24] A. G. Kleppe, J. Warmer, and W. Bast, “Mda explained: The model

driven architecture: Practice and promise,” Boston, MA, USA, 2003.

[25] omg, Meta Object Facility (MOF) Core Specification Version 2.0, 2006.

[Online]. Available: http://www.omg.org/cgi-bin/doc?formal/2006-01-01

[26] C. Schlenoff, G. M., F. Tissot, J. Valois, J. Lubell, and J. Lee, “The

process specification language (PSL): Overview and version 1.0 specifica-

tion,” Gaithersburg, MD., 2000, nISTIR 6459, National Institute of Stan-

dards and Technology.

[27] J. Clark, C. Casanave, K. Kanaskie, B. Harvey, N. Smith, J. Yunker,

and K. Riemer, “ebXML business process specification schema version

1.01,” 2001.

[28] K. Taveter and G. Wagner, “Agent-oriented enterprise modeling based

on business rules,” in ER ’01: Proceedings of the 20th International Confe-

rence on Conceptual Modeling. London, UK: Springer-Verlag, 2001, pp.

527–540.

[29] A. K. Chopra and M. P. Singh, “Commitments for flexible business

processes,” in AAMAS ’04: Proceedings of the Third International Joint

Conference on Autonomous Agents and Multiagent Systems. Washington,

DC, USA: IEEE Computer Society, 2004, pp. 1362–1363.

[30] D. Hay, “Defining business rules; what are they really?. guide busi-

ness rules project, final report,” 2000.

[31] S. Goedertier, R. Haesen, and J. Vanthienen, “EM-BrA2CE v0.1: A

Vocabulary and Execution Model for Declarative Business Process Model-

ing,” SSRN eLibrary, 2007.

[32] S. Jablonski and C. Bussler, Workflow Management: Modeling Con-

cepts, Architecture and Implementation. International Thomson Comput-

er Press, September 1996.

[33] M. Schacher, “Eu-rent business model, know gravity inc.”

http://www.knowgravity.com.

[34] A. Agrawal, “Semantics of Business Process Vocabulary and Process

Rules and a Visual Editor of SBVR,” Master’s thesis, Indian Institute of

660

IJSER

International Journal of Scientific & Engineering Research Volume 4, I(ÚÚÜÌɯƛȮɯ)ÜÓàɯƖƔƕƗɯɯ
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Technology Kanpur, India, 2009,

http://www.cse.iitk.ac.in/users/agrawala/thesis.pdf.

[35] F. Bry and P. lavinia Patranjan, “Use cases for reactivity on web: Using

eca rules for business process modeling,” INSTITUT FUR INFORMATIK

der Ludwig-Maximilian-Universitat Munchen, Report, 2006, uRL:

http://www.pms.ifi.lmu.de/publikationen/diplomarbeiten/Inna.Romanenk

o/DA Inna.Romanenko.pdf.

[36] “Business motivation model,” uRL: http://www.omg.org/docs/dtc/06-

08-03.pdf.

[37] “Production rules representation,” Object Management Group, Speci

ication, 2005, uRL: http://www.w3.org/2004/12/rulesws/

slides/paulvincent.pdf.

[38] J. Whittle and J. Schumann, “Generating statechart designs from sce-

narios,” International Conference on Software Engineering, pp. 314 – 323,

2000.

[39] “Object constraint language specification,” 2003, uRL:

http://www.omg.org/docs/ptc/03-10-14.pdf.

[40] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language

Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

[41] P. Selonen, K. Koskimies, and M. Sakkinen, “Transformation between

uml diagrams,” Journal of Database Management, vol. 14, no. 3, pp. 37–55,

2003.

661

IJSER

